
Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 1 -

Recursion
Chapter 3.5

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 2 -

Divide and Conquer

• When faced with a difficult problem, a classic technique

is to break it down into smaller parts that can be solved

more easily.

• Recursion is one way to do this.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 3 -

Recursive Divide and Conquer

• You are given a problem input that is too big to solve directly.

• You imagine,

– “Suppose I had a friend who could give me the answer to the same

problem with slightly smaller input.”

– “Then I could easily solve the larger problem.”

• In recursion this “friend” will actually be another instance (clone) of

yourself.

Tai (left) and Snuppy (right): the first puppy clone.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 4 -

Friends & Strong Induction

Recursive Algorithm:

•Assume you have an algorithm that works.

•Use it to write an algorithm that works.

If I could get in,

I could get the key.

Then I could unlock the door

so that I can get in.

Circular Argument!

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 5 -

Friends & Strong Induction

Recursive Algorithm:

•Assume you have an algorithm that works.

•Use it to write an algorithm that works.

To get into my house

I must get the key from a smaller house

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 6 -

Friends & Strong Induction

Recursive Algorithm:

•Assume you have an algorithm that works.

•Use it to write an algorithm that works.

Use brute force

to get into

the smallest house.

The “base case”

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 7 -

Example

• The factorial function:

– n! = 1 2 3 (n-1) n

• Recursive definition:

• As a Java method:

// recursive factorial function

public static int recursiveFactorial(int n) {

 if (n == 0) return 1; // base case

 else return n * recursiveFactorial(n- 1); // recursive case

}

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 8 -

Tracing Recursion

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 9 -

Linear Recursion

• recursiveFactorial is an example of linear recursion:

only one recursive call is made per stack frame.

// recursive factorial function

public static int recursiveFactorial(int n) {

 if (n == 0) return 1; // base case

 else return n * recursiveFactorial(n- 1); // recursive case

}

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 10 -

Linear Recursion Design Pattern

• Test for base cases

– Begin by testing for a set of base cases (there should be at least

one).

– Every possible chain of recursive calls must eventually reach a

base case, and the handling of each base case should not use

recursion.

• Recurse once

– Perform a single recursive call. (This recursive step may involve

a test that decides which of several possible recursive calls to

make, but it should ultimately choose to make just one of these

calls each time we perform this step.)

– Define each possible recursive call so that it makes progress

towards a base case.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 11 -

Another Example: Computing Powers

• The power function, p(x,n) = xn, can be

defined recursively:

• Assume multiplication takes constant time

(independent of value of arguments).

• This leads to a power function that runs in

O(n) time (for we make n recursive calls).

• We can do better than this, however.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 12 -

Recursive Squaring

• We can derive a more efficient linearly recursive

algorithm by using repeated squaring:

• For example,

24 = 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16

25 = 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32

26 = 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64

27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.

p(x,n) =

1

x p(x,(n 1) / 2)2

p(x,n / 2)2

if n = 0

if n > 0 is odd

if n > 0 is even

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 13 -

A Recursive Squaring Method

Algorithm Power(x, n):

 Input: A number x and integer n = 0

 Output: The value xn

 if n = 0 then

 return 1

 if n is odd then

 y = Power(x, (n - 1)/ 2)

 return x y y

 else

 y = Power(x, n/ 2)

 return y y

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 14 -

Analyzing the Recursive Squaring Method

Although there are 2
statements that
recursively call Power, only
one is executed per stack
frame.

Each time we make a
recursive call we halve the
value of n (roughly).

Thus we make a total of
log n recursive calls. That
is, this method runs in
O(log n) time.

Algorithm Power(x, n):

 Input: A number x and integer n = 0

 Output: The value xn

 if n = 0 then

 return 1

 if n is odd then

 y = Power(x, (n - 1)/ 2)

 return x y y

 else

 y = Power(x, n/ 2)

 return y y

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 15 -

• Given two integers, what is

their greatest common divisor?

• e.g., gcd(56,24) =

The Greatest Common Divisor (GCD) Problem

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 16 -

Euclid’s Trick

Good!

Better!

Too Far!

Euclid of Alexandria,

"The Father of Geometry"

c. 300 BC

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 17 -

Euclid’s Algorithm (circa 300 BC)

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 18 -

Time Complexity

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 19 -

Time Complexity

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 20 -

Tail Recursion

• Tail recursion occurs when a linearly recursive
method makes its recursive call as its last step.

• Such methods can be easily converted to non-
recursive methods (which saves on some resources).

• Examples

– Euclid’s GCD algorithm

– Reversing an array

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 21 -

Example: Recursively Reversing an Array

Algorithm ReverseArray(A, i, j):

 Input: An array A and nonnegative integer
indices i and j

 Output: The reversal of the elements in A
starting at index i and ending at j

 if i < j then

 Swap A[i] and A[j]

 ReverseArray(A, i + 1, j - 1)

 return

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 22 -

Example: Iteratively Reversing an Array

Algorithm IterativeReverseArray(A, i, j):

 Input: An array A and nonnegative
integer indices i and j

 Output: The reversal of the elements in
A starting at index i and ending at j

 while i < j do

 Swap A[i] and A[j]

 i = i + 1

 j = j - 1

 return

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 23 -

Defining Arguments for Recursion

• Solving a problem recursively sometimes requires

passing additional parameters.

• ReverseArray is a good example: although we might

initially think of passing only the array A as a parameter

at the top level, lower levels need to know where in the
array they are operating.

• Thus the recursive interface is ReverseArray(A, i, j).

• We then invoke the method at the highest level with the

message ReverseArray(A, 1, n).

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 24 -

Binary Recursion

• Binary recursion occurs whenever there are

two recursive calls for each non-base case.

• Example 1: The Fibonacci Sequence

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 25 -

The Fibonacci Sequence

• Fibonacci numbers are defined recursively:

F0 = 0

F1 = 1

Fi = Fi-1
+ Fi-2 for i > 1.

 (The “Golden Ratio”)

Fibonacci (c. 1170 - c. 1250)
(aka Leonardo of Pisa)

The ratio F

i
/ F

i 1
 converges to =

1+ 5

2
= 1.61803398874989...

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 26 -

The Golden Ratio

• Two quantities are in the golden ratio if the ratio of the

sum of the quantities to the larger quantity is equal to the

ratio of the larger quantity to the smaller one.

 is the unique positive solution to =
a + b

a
=

a

b
.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 27 -

The Golden Ratio

Leonardo

The Parthenon

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 28 -

Computing Fibonacci Numbers

F0 = 0

F1 = 1

Fi = Fi-1
+ Fi-2 for i > 1.

• A recursive algorithm (first attempt):
Algorithm BinaryFib(k):

 Input: Nonnegative integer k

 Output: The kth Fibonacci number Fk

 if k = 1 then

 return k

 else

 return BinaryFib(k - 1) + BinaryFib(k - 2)

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 29 -

Analyzing the Binary Recursion Fibonacci

Algorithm
• Let nk denote number of recursive calls made by BinaryFib(k).

Then

– n0 = 1

– n1 = 1

– n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3

– n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5

– n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9

– n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15

– n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25

– n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41

– n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

• Note that nk more than doubles for every other value of nk. That

is, nk > 2k/2. It increases exponentially!

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 30 -

A Better Fibonacci Algorithm

• Use linear recursion instead:

Algorithm LinearFibonacci(k):

 Input: A nonnegative integer k

 Output: Pair of Fibonacci numbers (Fk, Fk-1)

 if k = 1 then

 return (k, 0)

 else

 (i, j) = LinearFibonacci(k - 1)

 return (i +j, i)

• Runs in O(k) time.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 31 -

Binary Recursion

• Second Example: The Tower of Hanoi

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 32 -

Tower of Hanoi

 This job of mine

is a bit daunting.

Where do I start?

And I am lazy.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 33 -

Tower of Hanoi

At some point,

the biggest disk

moves.

I will do that job.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 34 -

Tower of Hanoi

To do this,

the other disks

must be in the

middle.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 35 -

Tower of Hanoi

How will these

move?

I will get a

friend to do it.

And another to

move these.

I only move the

big disk.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 36 -

Tower of Hanoi

2 recursive

calls!

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 37 -

Tower of Hanoi

Time:

T(1) = 1,

T(n) =

 2(2T(n-2))

 4(2T(n-3))

 2T(n-1)
 4T(n-2)
 8T(n-3)

 2i T(n-i)
 2n

1 + 2T(n-1)

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 38 -

The Cost of Recursion

• Many problems are naturally defined recursively.

• This can lead to simple, elegant code.

• However, recursive solutions entail a cost in time and

memory: each recursive call requires that the current

process state (variables, program counter) be pushed

onto the system stack, and popped once the recursion

unwinds.

• This typically affects the running time constants, but not

the asymptotic time complexity (e.g., O(n), O(n2) etc.)

• Thus recursive solutions may still be preferred unless

there are very strict time/memory constraints.

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 39 -

The “Curse” in Recursion: Errors to Avoid

// recursive factorial function

public static int recursiveFactorial(int n) {

 return n * recursiveFactorial(n- 1);

}

• There must be a base condition: the recursion must
ground out!

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 40 -

The “Curse” in Recursion: Errors to Avoid

// recursive factorial function

public static int recursiveFactorial(int n) {

 if (n == 0) return recursiveFactorial(n); // base case

 else return n * recursiveFactorial(n- 1); // recursive case

}

• The base condition must not involve more recursion!

Last Updated 1/19/10 2:46 PM
CSE 2011

Prof. J. Elder
- 41 -

The “Curse” in Recursion: Errors to Avoid

// recursive factorial function

public static int recursiveFactorial(int n) {

 if (n == 0) return 1; // base case

 else return (n – 1) * recursiveFactorial(n); // recursive
case

}

• The input must be converging toward the base
condition!

