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Recursion 
Chapter 3.5 
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Divide and Conquer 

• When faced with a difficult problem, a classic technique 

is to break it down into smaller parts that can be solved 

more easily. 

• Recursion is one way to do this. 
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Recursive Divide and Conquer 

• You are given a problem input that is too big to solve directly. 

• You imagine,  

– “Suppose I had a friend who could give me the answer to the same 

problem with slightly smaller input.” 

– “Then I could easily solve the larger problem.” 

• In recursion this “friend” will actually be another instance (clone) of 

yourself. 

Tai (left) and Snuppy (right):  the first puppy clone. 
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Friends & Strong Induction 

Recursive Algorithm: 

•Assume you have an algorithm that works. 

•Use it to write an algorithm that works. 

If I could get in, 

I could get the key. 

Then  I could unlock the door  

so that I can get in. 

Circular Argument! 
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Friends & Strong Induction 

Recursive Algorithm: 

•Assume you have an algorithm that works. 

•Use it to write an algorithm that works. 

To get into my house 

I must get the key from a smaller house 
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Friends & Strong Induction 

Recursive Algorithm: 

•Assume you have an algorithm that works. 

•Use it to write an algorithm that works. 

Use brute force  

to get into  

the smallest house. 

The “base case” 
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Example 

• The factorial function: 

– n! = 1  2  3    (n-1)  n 

• Recursive definition: 

• As a Java method: 

// recursive factorial function  

public static int  recursiveFactorial(int n) {  

    if  (n  ==  0)  return  1; // base case 

    else return  n  *  recursiveFactorial(n- 1); // recursive case 

} 



Last Updated 1/19/10 2:46 PM 
CSE 2011 

Prof. J. Elder 
- 8 - 

Tracing Recursion 
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Linear Recursion 

• recursiveFactorial is an example of linear recursion:  

only one recursive call is made per stack frame. 

// recursive factorial function  

public static int  recursiveFactorial(int n) {  

    if  (n  ==  0)  return  1; // base case 

    else return  n  *  recursiveFactorial(n- 1); // recursive case 

} 
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Linear Recursion Design Pattern 

• Test for base cases 

– Begin by testing for a set of base cases (there should be at least 

one).  

– Every possible chain of recursive calls must eventually reach a 

base case, and the handling of each base case should not use 

recursion. 

• Recurse once 

– Perform a single recursive call. (This recursive step may involve 

a test that decides which of several possible recursive calls to 

make, but it should ultimately choose to make just one of these 

calls each time we perform this step.) 

– Define each possible recursive call so that it makes progress 

towards a base case. 
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Another Example:  Computing Powers 

• The power function, p(x,n) = xn, can be 

defined recursively: 

• Assume multiplication takes constant time 

(independent of value of arguments). 

• This leads to a power function that runs in 

O(n) time (for we make n recursive calls). 

• We can do better than this, however. 
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Recursive Squaring 

• We can derive a more efficient linearly recursive 

algorithm by using repeated squaring: 

• For example, 

24 =  2(4/2)2 = (24/2)2 = (22)2 = 42 = 16

25 =  21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32 

26 = 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64

27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128. 

  

p(x,n) =

1

x p(x,(n 1) / 2)2

p(x,n / 2)2

if n = 0

if n > 0 is odd

if n > 0 is even
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A Recursive Squaring Method 

Algorithm Power(x, n): 

      Input: A number x and integer n = 0 

      Output: The value xn 

     if n = 0 then 

  return 1 

     if n is odd then 

  y  = Power(x, (n - 1)/ 2) 

  return x  y y 

     else 

  y = Power(x, n/ 2) 

  return y  y 
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Analyzing the Recursive Squaring Method 

Although there are 2 
statements that 
recursively call Power, only 
one is executed per stack 
frame. 

Each time we make a 
recursive call we halve the 
value of n (roughly). 

Thus we make a total of 
log n recursive calls. That 
is, this method runs in 
O(log n) time. 

Algorithm Power(x, n): 

      Input: A number x and integer n = 0 

      Output: The value xn 

     if n = 0 then 

  return 1 

     if n is odd then 

  y  = Power(x, (n - 1)/ 2) 

  return x  y y 

     else 

  y = Power(x, n/ 2) 

  return y  y 
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• Given two integers, what is 

their greatest common divisor? 

• e.g., gcd(56,24) =  

The Greatest Common Divisor (GCD) Problem 
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Euclid’s Trick 

Good! 

Better! 

Too Far! 

Euclid of Alexandria,  

"The Father of Geometry"  

c. 300 BC 
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Euclid’s Algorithm (circa 300 BC) 
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Time Complexity 
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Time Complexity 
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Tail Recursion 

• Tail recursion occurs when a linearly recursive 
method makes its recursive call as its last step. 

• Such methods can be easily converted to non-
recursive methods (which saves on some resources). 

• Examples 

– Euclid’s GCD algorithm 

– Reversing an array 
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Example:  Recursively Reversing an Array 

Algorithm ReverseArray(A, i,  j): 

      Input: An array A and nonnegative integer 
indices i and  j 

      Output: The reversal of the elements in A 
starting at index i and ending at  j 

     if i <  j then 

  Swap A[i] and A[ j] 

  ReverseArray(A, i + 1,  j - 1) 

     return 
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Example:  Iteratively Reversing an Array 

Algorithm IterativeReverseArray(A, i, j ): 

      Input: An array A and nonnegative 
integer indices i and j 

      Output: The reversal of the elements in 
A starting at index i and ending at j 

     while i <  j do 

 Swap A[i ] and A[ j ] 

 i  = i + 1 

 j  = j - 1 

     return 



Last Updated 1/19/10 2:46 PM 
CSE 2011 

Prof. J. Elder 
- 23 - 

Defining Arguments for Recursion 

• Solving a problem recursively sometimes requires 

passing additional parameters. 

• ReverseArray is a good example:  although we might 

initially think of passing only the array A as a parameter 

at the top level, lower levels need to know where in the 
array they are operating.   

• Thus the recursive interface is ReverseArray(A, i, j). 

• We then invoke the method at the highest level with the 

message ReverseArray(A, 1, n). 
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Binary Recursion  

• Binary recursion occurs whenever there are 

two recursive calls for each non-base case. 

• Example 1: The Fibonacci Sequence 
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The Fibonacci Sequence 

• Fibonacci numbers are defined recursively: 

F0 =  0 

F1 =  1 

Fi =  Fi-1 
+ Fi-2     for i > 1. 

   (The “Golden Ratio”) 

Fibonacci (c. 1170 - c. 1250) 
(aka Leonardo of Pisa)  

  
The ratio F

i
/ F

i 1
 converges to =

1+ 5

2
= 1.61803398874989...
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The Golden Ratio 

• Two quantities are in the golden ratio if the ratio of the 

sum of the quantities to the larger quantity is equal to the 

ratio of the larger quantity to the smaller one.  

 is the unique positive solution to =
a + b

a
=

a

b
.
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The Golden Ratio 

Leonardo 

The Parthenon 
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Computing Fibonacci Numbers 

F0 =  0 

F1 =  1 

Fi =  Fi-1 
+ Fi-2     for i > 1. 

• A recursive algorithm (first attempt): 
Algorithm BinaryFib(k): 

      Input: Nonnegative integer k 

      Output: The kth Fibonacci number Fk 

     if k = 1 then 

  return k 

     else 

  return BinaryFib(k - 1) + BinaryFib(k - 2) 
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Analyzing the Binary Recursion Fibonacci 

Algorithm 
• Let nk denote number of recursive calls made by BinaryFib(k).  

Then 

– n0 = 1   

– n1 = 1   

– n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3   

– n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5   

– n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9   

– n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15   

– n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25   

– n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41   

– n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67. 

• Note that nk  more than doubles for every other value of nk.  That 

is, nk > 2k/2. It increases exponentially! 
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A Better Fibonacci Algorithm  

• Use linear recursion instead: 

Algorithm LinearFibonacci(k): 

      Input: A nonnegative integer k 

      Output: Pair of Fibonacci numbers (Fk, Fk-1) 

     if k = 1 then 

  return (k, 0) 

     else 

  (i,  j)  =  LinearFibonacci(k - 1) 

  return (i +j, i) 

• Runs in O(k) time. 
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Binary Recursion 

• Second Example: The Tower of Hanoi 
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Tower of Hanoi 

 This job of mine 

is a bit daunting. 

Where do I start? 

And I am lazy. 



Last Updated 1/19/10 2:46 PM 
CSE 2011 

Prof. J. Elder 
- 33 - 

Tower of Hanoi 

At some point, 

the biggest disk 

moves. 

I will do that job. 
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Tower of Hanoi 

To do this,  

the other disks 

must be in the 

middle. 
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Tower of Hanoi 

How will these 

move? 

I will get a 

friend to do it. 

And another to 

move these. 

I only move the 

big disk. 
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Tower of Hanoi 

2 recursive 

calls! 
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Tower of Hanoi 

Time:  

T(1) = 1,  

T(n) = 

         2(2T(n-2))  

         4(2T(n-3)) 

 2T(n-1) 
 4T(n-2) 
 8T(n-3) 

 2i T(n-i) 
 2n 

1 + 2T(n-1) 
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The Cost of Recursion 

• Many problems are naturally defined recursively. 

• This can lead to simple, elegant code. 

• However, recursive solutions entail a cost in time and 

memory: each recursive call requires that the current 

process state (variables, program counter) be pushed 

onto the system stack, and popped once the recursion 

unwinds. 

• This typically affects the running time constants, but not 

the asymptotic time complexity (e.g., O(n), O(n2) etc.) 

• Thus recursive solutions may still be preferred unless 

there are very strict time/memory constraints. 
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The “Curse” in Recursion:  Errors to Avoid 

// recursive factorial function  

public static int  recursiveFactorial(int n) {  

    return  n  *  recursiveFactorial(n- 1);  

} 

• There must be a base condition:  the recursion must 
ground out! 
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The “Curse” in Recursion: Errors to Avoid 

// recursive factorial function  

public static int  recursiveFactorial(int n) {  

    if  (n  ==  0)  return  recursiveFactorial(n); // base case 

    else return  n  *  recursiveFactorial(n- 1); // recursive case 

} 

• The base condition must not involve more recursion! 
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The “Curse” in Recursion: Errors to Avoid 

// recursive factorial function  

public static int  recursiveFactorial(int n) {  

    if  (n  ==  0)  return  1; // base case 

    else return  (n – 1)  *  recursiveFactorial(n); // recursive 
case 

} 

• The input must be converging toward the base 
condition! 


